
Understanding Code

David A. Mellis
Interaction Design Insitute Ivrea

Draft: March 20, 2006



Abstract

Understanding Code

David A. Mellis

Current methods for debugging and reading source code impose too much
cognitive burden on programmers. Understanding Code presents the design of
a tool for exploring a program’s behavior. It provides a unified interface that
exposes an overview of the code’s execution, connections between and relative
importance of different pieces of the program, and the exact, step-by-step com-
putations performed by the software. By making it easier to understand code,
an implementation of this interface would increase the maintainability and ex-
tensibility of existing programs.



Contents

1 Introduction 2

2 Background Research 4

3 Explanatory Prototype 13

4 Analysis 16

5 Interface Design 20

6 Feasibility 28

7 Evaluation 29

8 Conclusion 30

A Elements of Programming 32

1



Chapter 1

Introduction

Writing a computer program is like trying to assemble a grandfather clock,
blindfolded, without being sure that one has all the parts. That is, it requires
the coordination of countless intricate pieces with no good way of observing the
functioning of the whole. Put one tiny part in the wrong place and everything
stops, but you can only discover the error by probing each part of the system
in turn, memorizing the numerous linkages, combinations, and movements. It’s
a wonder any programs ever work.

Software needn’t be so. No physical constraints govern the arrangement of its
components. Nothing need be hidden from view behind a decorative covering.
Only our ingenuity limits the number of ways we can recombine different pieces,
the tools we can use on them, the ways we look at their operation. As Fred
Brooks has said, ”the programmer, like the poet, works only slightly removed
from pure though-stuff. He builds his castles in the air, from the air, creating
by exertion of the imagination.”

It falls to us, then, the makers and users of programming languages, li-
braries, environments, to decide which tools we need, how they should function,
and what they should look like. The ones we have now are just starting to adjust
their forms to the problems we are trying to solve and the behaviors we are try-
ing to understand. Originally, they were primitive, general-purpose instruments:
the text editor knew nothing of the programming language; the operating sys-
tem cared little for one’s source code. Now connections are beginning to form:
editors display variables in a different color from strings, comments with less
saturation than function calls; a program crash often comes with a list of the
lines of code immediately preceding the disaster; syntax errors in a source file
get a squiggly red underline as you type; one can edit the code of a running
program; even record every function called, variable modified, input received.

And yet, there is no equivalent to opening the case of the clock and watching
it tick out the seconds, swaying pendulum letting rotate a gear, that regulating
the revolutions of another, slower, one, and that a third, and a fourth, chains
driving the hands from behind, the whole ballet powered by a slowly descending
weight. We cannot watch a whole program at work.

Of course, there are difficulties. Software is orders of magnitude more com-
plex than even the most intricate clock. It is made of text - words that become
meaningless at a distance. It runs inconceivably fast, so that we cannot possi-
bly examine each of its actions individually. It is made of heterogeneous parts,

2



David A. Mellis – Understanding Code – March 20, 2006(DRAFT) 3

written by different people in different languages with varying degrees of se-
crecy. It is written under pressure, changed often, and required to work under
wide-ranging conditions, with a menagerie of accessories and managers.

Still, reasons exist for hope. As computers get faster and the complexity of
their software increases, so too do the resources it offers us to understand and
assemble our code. We constantly find new abstractions that allow program-
mers to work at higher and higher levels, and to reuse more and more mature
technology. As we learn that programmers are people too, we can successfully
apply to them many of the principles that help ordinary people use all types of
software.

This thesis attempts to do just that: show how an understanding of the
goals and mindsets of programmers can be used to design tools to help them
understand the dynamic behavior of their programs. It attempts to reduce the
cognitive burden on programmers by suggesting how knowledge and reasoning
could be shifted from their heads into a tool. By making it easier to read as
well as write code, it hopes to ease the reuse and debugging of existing source.

It firsts reviews background research, discussing the limitations of current
tools for understanding programs and drawing inspiration from related areas of
work. Chapter 3 presents a prototype created early on to delimit and explain
the focus of this thesis. Chapter 4 analyzes the process of understanding and
debugging software, both as an aid for non-technical readers and as an essential
step in determining the requirements for the design of the software tool pre-
sented in Chapter 5. This interface is the primary product of thesis, a proposal
for understanding the complexity of the behavior of an executing piece of soft-
ware. Chapter 6 discusses the technical feasibility of such a tool and Chapter
7 evaluates its usefulness. Finally, Chapter 8 discusses the lessons learned from
this thesis process.



Chapter 2

Background Research

Need to add spreadsheets, Code Profiles by W. Bradford Paley, ZStep95
The screenshots in this section need to be annotated to identify

individual components of the various interfaces in order to facilitate
comparison with the interface developed for this thesis.

Traditional Debuggers

Need to describe print-statement debugging here.
Traditional debuggers keep track of the correspondence between the source

code of a program and the machine code it generates. Thus, they can, for
example, halt the execution of a program when a particular line of code (called
a breakpoint) is reached. Then the programmer can examine the state of the
program’s memory, which the debugger can map back to variables in the code.
Lines of code can be executed one at a time (stepped through), or function
call can be stepped into. Some debuggers allow breakpoints to be specified for
certain conditions (e.g. using an undefined variable) as well particular lines.

Debugging using a traditional debugger can be a very awkward and time
consuming process. The most important step is locating the bug. This usually
requires guessing many possible circumstances which could create it, stopping
the debugger at each one (which might mean repeatedly stepping through a
piece of code until the desired condition appears), examining the contents of
many different variables (often in a difficult to read form), and slowly advancing
through the code to see if the bug appears. Click the wrong button and execution
can skip right past the area of interest, requiring a restart of the entire process.

Another problem is the number of distinct pieces of information that must
be integrated by the programmer. A debugger shows the values of variables in
one window, the program’s output in another, the current stack of function calls
in a third, program threads in a fourth, with only a small amount of room left
over for the source code itself, whose repair is the object of the whole process.
Recently, debuggers have begun integrating more information into the source
code window, by, for example, displaying the value of a variable when the mouse
cursor hovers over it. My research furthers this process, revealing programmers
of the cognitive burden of combining many small facets of the program’s state.

4



David A. Mellis – Understanding Code – March 20, 2006(DRAFT) 5

Figure 2.1: The default debugging perspective in the popular Jave IDE Eclipse.
Notice the small portion of the screen devoted to source code.

Tracing Debuggers

These debuggers insert into a program code to keep track of various events in its
execution, such as a function call or variable assignment. The resulting record
is called a “trace.” Increasing processor speed, hard drive capacities and higher
level languages are beginning to make it practical to record practically every
significant occurence in the execution of a program, allowing the programmer
to explore backwards and forwards in time. For example, the Omniscient De-
bugging project has released a tracing debugger for Java, and they also exist
for functional languages such as Haskell and OCaml.

The availability of such large amounts of data demands careful attention to
the design of the method for exploring it. Goldsmith, O’Callahan, and Aiken,
in Relational Queries Over Program Traces, describe a method for building a
querying a database of function calls using a SQL-like language. They provide
examples of how this technique can be used to detect performance problems and
answer other programmer questions.

Language-Aware Editing

Include Xcode screenshot here.
Previously, source code was mainly edited with generic text-editors. That

is, the program had no specific knowledge of the structure or syntax of the
programming language or the purpose or form of the code. Now many tools can



David A. Mellis – Understanding Code – March 20, 2006(DRAFT) 6

Figure 2.2: Omniscient debugging. The left and right arrows step forwards and
backwards through the execution of the program.

offer services based on an understanding of the program being edited. These
include:

• White-space: most compilers ignore most white-space; it is, however, cru-
cial to the legibility of code and many editors will help keep it consistent.

• Comments: ignored by the compiler, but may be auto-generated or orga-
nized by the editor.

• Syntax highlighting: the display of different pieces of a program in different
colors. For example, comments might be displayed in gray, strings in red,
keyword in blue.

• Version history / diffs: an editor might display lines changed by the pro-
grammer, or the amount of editing a section of code has undergone.

• Error highlighting: some environments (e.g. Eclipse) will incrementally
compile code as it is edited, highlighting syntax errors as they occur (e.g.
with a red underline).

• Command completion (dropdown lists): editors can automatically com-
plete partially-typed names, or display a list of possible options.

• UML and auto-generated class diagrams.



David A. Mellis – Understanding Code – March 20, 2006(DRAFT) 7

• Links/related sections of code: for example, the place in which the cur-
rently selected variable was defined.

• Refactoring: the ability to perform simultaneous, distributed edits to large
bodies of code (e.g. renaming a variable or reordering the arguments to a
function).

In 1997, Baecker, DiGiano, and Marcus argued that editors could use visual
display and organization to provide even more assistance (Software Visualization
for Debugging):

“A large real program is an information narrative in which the components
should be arranged in a logical, easy-to-find, easy-to-read, easy-to-remember
sequence. The reader should be able to quickly find a table of contents to the
document, determine its parts, identify desired sections, and find their locations.
Within the source text, the overall structure and appearance of the page should
furnish clues regarding the nature of the contents.”

Managing Duplicated Code with Linked Editing (2003) by Toomim, Begel,
Graham presents Codelink, a tool for creating, maintaining and editing linked
sections of code (i.e. unrefactored sections of code which have much text in
common but also include differences). Allows programmers to make consistent
changes across related sections of code without the cognitive overhead of re-
structuring or abstracting them. Drastically lowers the time required to relate
sections of code (vs. abstraction). Most code bases have lots of duplication (e.g.
15-25% in the Linux kernel; 9% in GCC; 21-29% in Sun’s JDK).

Clones are created by selecting a block of text, then selecting similar blocks
of text while holding the Control key. Equivalent sections of the clone are
shown with blue backgrounds, differences with yellow backgrounds. A checkbox
(“Linked Editing”) toggles between linked and individual editing. During linked
editing, the cursor becomes a block and ghost cursors (in blue) appear at the
corresponding sections of the other clones. During individual editing, the cursor
is a bar and ghost cursors disappear. Shared sections of clones can be elided so
that only the differences are visible.

The authors would like to add support for moving back-and-forth between
linked coded and higher level language abstractions as well as for the automatic
creation of linked sections through copy-and-paste or automatic clone detection
tools.

Codelink was developed on top of Harmonia, a flexible, extensible system
for creating language aware tools.

Some projects have taken an extreme perspective on language-aware editing,
creating environments that do not allow any text editing. These include Pablo,
discussed below, and Subtext. Subtext is an environment with no distinction
between editing and running a program. The value of a variable is determined
by its links to other variables and functions; whenever those links are changed,
the values of all variables are immediately updated. Thus, all results of the
program are visible as it is being modified. Additionally, all edits are made
via links, that is, essentially, to the structure of the code rather than its textual
expression. This means that the program is always syntactically correct and can
evaluated at all times, and that names are not needed to execute, and are free
to be used or not by the programmer as descriptive devices. Also, by keeping
track of copies and pastes in the code, Subtext allows duplicates to be managed
in similar ways to Codelink.



David A. Mellis – Understanding Code – March 20, 2006(DRAFT) 8

Testing

A newly popular technique for checking program correctness is known as “unit
testing.” A unit test checks the correctness of a single unit of code in a self-
contained manner. This makes them easy to run quickly and an excellent source
of examples with which to attempt to understand code. My research seeks to
exploit unit tests for programmers trying to understand how code works instead
of simply checking it for correctness.

Saff and Enrst have developed a technique (described in Reducing wasted
development time via continuous testing) for continuously running tests as a
program is edited, saving developer from wasting time waiting for tests to run
or remaining ignorant of program bugs for long periods of time (making them
harder to fix). This suggests that it may be feasible to display state information
from program execution while code is being edited. For a given unit test, a
programmer could see, perhaps, the values of the variables in the code being
edited, metaphorically flowing over the program in a method similar to that of
Pablo.

Figure 2.3: Visualization of test results from Tarantula. Lines of source code
that pass tests are shown in green, failing lines in red.



David A. Mellis – Understanding Code – March 20, 2006(DRAFT) 9

Code Evolution

The way a program evolved can be invaluable in understanding how it works.
The following papers offer ideas for making use of the revision history of a piece
of software.

CVSSearch: Searching through Source Code using CVS Comments (2001)
A tool for searching a project’s source code and associated CVS comments.

Initially displays a list of matching files with number and types of match (source
or CVS comment) for each. Clicking a file summons a vertically-split view: lines
matching the search on the left, full source on the right. Clicking a line on the
left scrolls the right to the corresponding location and displays the associated
CVS comment at the bottom of the window. Lines that more strongly match
the search query are displayed with progressively darker backgrounds.

Also presented are techniques for associated comments with lines of code
through multiple revisions and building a database from the CVS history, as
well interesting statistics on the size, number of revisions per file, number of
CVS comments per line of multiple KDE projects.

The interface is rudimentary, but the idea good. How can CVS comments
be used to provide a more conceptual and historical overview of a line or section
of code? What about a tool that simply displays a log of CVS revisions and
comments with links to or summaries of the corresponding changes?

Version Sensitive Editing: Change History as a Programming Tool (1998)
David L. Atkins discusses VE, a tool which displays version history during

editing of source code. This interface uses simple visual characteristics to high-
light the most important aspects of the revision history of a line. In particular,
changes made to the working copy of the code (i.e. since the last committed
version) are shown in bold, previously-deleted lines, when requested, are un-
derlined, and non-approved code is shown in italics. The date and comment
associated with the latest revision of a line are shown in addition to the line
number. The programmer can adjust the criteria which determine which lines
receive a particular appearance.

The paper provides two realistic examples of the usefulness of this tool to
the programmer: finding a bug by correlating dates of revisions of lines with the
occurence of the bug, and coordinating edits with a programmer whose changes
have not yet been approved. How might such a system work if not constrained
by the limitations of Emacs and Vi?

From In Search of a Simple Visual Vocabulary (1995)
“So we can visualize program executions as a series of space-maps. But a

series of space-maps is itself just a space-map – a space-map being any arrang-
ment of regions in a space of arbitrary dimensions. We can manipulate this
history using the same construction, deconstructions and evaluation rules that
we use for any other data object. A program history can be used as data for
visualizing program execution, debugging and communication.”

Algorithm/Program Visualization

Graphic representations of the execution of a program. Various parts of the state
of the program are shown, with time represented as a spatial axis or through
animation.



David A. Mellis – Understanding Code – March 20, 2006(DRAFT) 10

Figure 2.4: VE, which shows revision information as code is edited. Lines
changed by the programmer are bold, deleted lines are underlined.

For example, in the visualization of a sorting algorithm, the items to be
sorted are often shown as a row of lines of varying lengths. Items being directly
compared are highlighted and may be swapped. As the algorithm progresses, its
working may be understand by noticing which lines are moved and which parts
of the group are sorted first. Eventually, the lines are in order from shortest to
longest.

Algorithm visualizations are often custom made for educational use to allow
students to examine and compare the workings of various algorithms. The
amount of time required to create a useful visualization makes them difficult to
use as a general purpose tool.

Algorithm visualizations have become more interactive as the the educa-
tional benefits of allowing students to experiment have been realized. What
You See Is What You Code, by Hundhausen and Brown describes a system in
which the visualization and code are kept continuously in sync, allowing for easy
manipulation of either.

A related technique is program visualization. This attempts to visualize
program execution generically by displaying, for example, a color-coded view of
the memory used during execution. Or a diagram may describe the relationship
of various functions (e.g. the time spent in each, and which are called from
which others). Because of their lack of specificity, these tools are only helpful
in limited circumstances.



David A. Mellis – Understanding Code – March 20, 2006(DRAFT) 11

Figure 2.5: Algorithm Visualization from Sorting out Sorting.

Visual Programming

Need to talk about spreadsheets somewhere.
A method for constructing programs visually instead of textually. Typically,

various graphical symbols represent different features of a program, such as
variables, control structures, etc.

In Aesthetics of Computation: Unveiling the Visual Machine (2001), Jared
Schiffman describes several of his excellent visual programming interfaces, in-
cluding Plate, in which traditional textual constructs are placed on plates, with
designated holes with which to fill in values or other statements; and Pablo,
a data-flow language in which operations are visually linked together into pro-
grams, through which values flow during execution. Schiffman also offers several
important principles for visual programming environments. He places primary
importance on continuity, including an unified visual space, single visual lan-
guage, continuity of composition and execution, integration of machine (i.e.
code) and materials (values), and continuity of animation. My research seeks
to discover what these principles mean for text-based languages.

Custom/Complex Interface Elements



David A. Mellis – Understanding Code – March 20, 2006(DRAFT) 12

Figure 2.6: Pablo in the midst of evaluating a function. On the right, a function
call has been expanded through the creation of another box.



Chapter 3

Explanatory Prototype

In an attempt to ground my thesis and explain its domain to a non-programming
audience, I began by creating an explanatory prototype. It provides an example
of a non-graphical visualization of program behavior: using code (the medium
of programming) as an interface to explore computation.

Introduction to Scheme

The prototype took the form of a debugging interface to the Scheme program-
ming language (a dialect of Lisp). I choose Scheme because it uses the same
simple (if a bit strange-looking) syntax for every operation: nested, parenthe-
sized expressions, each containing an operation followed by its arguments – e.g.
(+ 1 2 3) adds the numbers one, two, and three to get six. This uniformity
meant that I could use a single technique to provide interactions with any code.

Part of the power of Scheme comes from its interactive environment (known
as a REPL: “read-eval-print loop”), which allows a programmer to type in a
Scheme expression and immediately view its resulting value, without the need
for any intermediate steps such as compiling or running the program. This
rapid evalution allows a programmer to quickly try out a library of code or test
a newly written function.

> (define (factorial x)
> (if (< x 1)
> 1
> (* x (factorial (- x 1)))))
> (factorial 3)
6

Figure 3.1: Transcript of an interactive session with a Scheme interpreter. Lines
prefixed with a “>” were typed by the programmer; others are responses by the
interpreter. In this case, the programmer defined a function to compute the
factorial of a number. Then the programmer used it to compute the factorial of
3 (which is 6).

If, however, the programmer doesn’t understand how the expression typed

13



David A. Mellis – Understanding Code – March 20, 2006(DRAFT) 14

yielded the value returned, Scheme environments provide no easy method for
digging deeper into the code’s execution. My prototype reveals the entire chain
of computation to the programmer for exploration.

How it Works

A basic set of interactions allows for exploration of the computation performed
by a program. Clicking a value expands the code that calculated it. The click-
able values are underlined, similar to hyperlinks on a web page. Values of
variables are shown in blue, and hovering over them with the mouse shows the
variable’s name. Code that wasn’t executed is grayed out.

For example, the initial result of 6 expands into (factorial 3) (the function
call that calculated it), followed by (if (= 3 1) 1 (* 3 2)) (the body of that
function). Here, the 2 is also the result of a calculation, and clicking it will reveal
that code.

> (factorial 3)
6

> (factorial 3)
6
|
(factorial 3)
(if (= 3 1)

1
(* 3 2))

> (factorial 3)
6
|
(factorial 3)
(if (= 3 1)

1
(* 3 2))

|
(factorial 2)
(if (= 2 1)

1
(* 2 1))

.

.

.

Figure 3.2: Expanding the function calls. Show mouse cursors?

Implementation

Initially, the prototype consisted of a simple, hand-coded webpage. Hyperlinks
triggered short Javascript functions that expanded or collapsed the relevant
sections of code. HTML offers a straightforward, precise control of typogra-
phy, layout, and behavior that’s difficult to achieve with either graphic design
software like Adobe Illustrator or by programming a desktop application.

Additionally, the use of HTML eased the transition into the second, working
prototype. This version allows a programmer to enter arbitrary Scheme code
(with some limitations) and navigate the resulting computation in the same way
as in the first, canned prototype. The interface consists of similar webpages,
but in this case, they are dynamically generated by a Scheme program. Here, a
second property of Scheme was also essential – namely, the existence of simple,



David A. Mellis – Understanding Code – March 20, 2006(DRAFT) 15

freely available Scheme programs to parse and execute Scheme code. I modi-
fied one from Abelson and Sussman’s Structure and Interpretation of Computer
Programs to record the program’s computations and output them as HTML.

Discussion

This process is distinct from those of writing and running code. Like reading a
map, it involves following trails, finding connections, and seeing how different
parts fit together. As with an online map, it allows one to zoom in on differ-
ent pieces. In short, it is a mirror or visualization of the actual computation
performed by a program that is:

• specific to a particular execution on particular values,

• a passive recording of past activity, and

• structured.

The code itself, in contrast, is abstract, requiring more effort by the pro-
grammer to deduce its behavior for a given input. Traditional debuggers sus-
pend a program’s execution, meaning that in order to view a different part of
a computation, the programmer must run more of the program. This makes it
impossible to look back at a previous program state or jump between two sec-
tions of interest. Debugging logs output by the program give a specific, passive
view of the execution, but an unstructured one: the logs cannot be navigated
or cross-referenced.

Additionally, the continuity between the language used to edit a program
and the one used by the prototype to display its behavior avoids the additional
cognitive load imposed by tools which use different interfaces for each task.

Questions

While this prototype delimiited and communicated the subject of the thesis, it
also identified some questions for the remainder of the thesis investigation.

• How does this approach scale to larger programs?

• How does this functionality integrate into a complete user interface?



Chapter 4

Analysis

Frustrations with Current Tools

Background chapter should explain limitations of current tools; this
section describes the programmer frustrations that arise from those
limitations.

Current tools for understanding and debugging code offer many frustrations
to programmers. Most fall under the overall complaint, “I can’t keep it all in my
head.” Programmers need to remember previous states of time and connections
between different parts of the program.

a result of user research

• I can’t tell what connects to what.

• I’m getting lost in the details.

• I can’t tell what’s happening.

• I don’t know where in the code to look.

• I don’t know what will happen if I change this.

Breakdown of the Debugging Process

In order to better understand the process and requirements of debugging (one
of the major reasons for seeking to understand a program), I created this break-
down based on my own experience and interviews with two professional pro-
grammers.

Task 1. Determine relevant general section of code.

technique a: guess source of problem. place breakpoints before and after.

• action: look through different source files

• action: place breakpoints

• action: start debugger

16



David A. Mellis – Understanding Code – March 20, 2006(DRAFT) 17

technique b: flag lines of code triggered by a particular action/command/input.

• action: run program

• action: start recording actions/inputs

• action: interact with program to reach area of interest

• action: begin flagging

• action: perform action which triggers incorrect behavior

• action: end flagging

• action: stop recording

• action: exit program

• action: start debugger

technique c: logging (print statements)
technique d: compare with a working version of the code

Task 2. Narrow in on specific, proximate cause (i.e. specific line of
code).

• action: step through code one line at a time

• action: monitor watch window (variables window) while stepping, check-
ing for incorrect values

• action: flag proximate cause

Task 3. Determine if proximate cause is root cause (i.e. is that line
of code right or wrong?).

• action: reasoning

• action: reading documentation for objects/functions used in the line of
code: do they do what the author of the code thought they do?

• action: perform computations.

• action: fudge values

Task 4. If this is not the root cause, repeat tasks 2 and 3.

• action: step into function which returned incorrect value/performed in-
correct computation

• action: review previous changes to variable which has incorrect value

• action: examine external dependencies (e.g. values in database, behavior
of other programs, contents of a file, etc.)



David A. Mellis – Understanding Code – March 20, 2006(DRAFT) 18

Task 5. Fix root cause (i.e. edit the code).

• action: text editing

• action: look up classes/functions in documentation

Task 6. Check that it corrected the incorrect behavior.

• action: replay input (GUI, files, network, DB, etc.)

Task 7. Make sure nothing else broke.

• action: run unit tests

• action: review unit test results for failures

Task 8: If something else broke, figure out why (tricky).

Other Motivations for Understanding Code

Debugging isn’t the only reason for seeking to understand a program. Here are
some of the others.

Need to understand a program/library generally

Reason 1: want to use the program/library
Reason 2: want to modify/improve program/library
Reason 3: want to learn from program/library

Need to understand dependencies

SITUATION IV: need to monitor a long-running program (e.g. mem-
ory usage, performance, errors, etc.)

Debugging Scenario

See Figure 4.1.



David A. Mellis – Understanding Code – March 20, 2006(DRAFT) 19

(a) Adding 12 and 5 with the calculator (b) The program gives the wrong answer; it
must have a bug.

(c) A list of the files of source code used by
the program; something that most current
debuggers don’t show.

(d) The contents of output.c. The box
shows the value of the variable answer passed
into this function; it is wrong.

(e) The programmer enters the correct value
for this variable; a red flag appears to indi-
cate that there is currently an incorrect value
somewhere in the code.

(f) To help track down the root of the prob-
lem, the tool can jump to the source of the
value of this variable.

(g) Here’s the problem: someone neglected
to write the code to calculate the answer.

(h) The programmer types in the correct
code.

(i) And now the calculator gives the right an-
swer. Notice that the flag has turned green,
to indicate that the value of the answer vari-
able is correct.

Figure 4.1: Debugging scenario showing mindset and needs of programmer.



Chapter 5

Interface Design

Understanding Code presents a unified history of a program’s behavior. It is
designed for mainstream programming languages like C, C++, or Java, which
share a similar syntax. It differs from previous tools in its integration of variables
and values; its unified display of the progression of time; and its visualization
of the connection between different parts of the program.

Figure 5.1: Preliminary wireframe of the Understanding Code software tool.

20



David A. Mellis – Understanding Code – March 20, 2006(DRAFT) 21

Time and Sequence

Traditional debuggers freeze a program at a particular moment. To show the
state of a program at a later point in time, the debugger runs more of the
program. There is no way to look back at previous states of the program, so
the programmer remember any relevant information and be careful not to miss
any important calculations by letting too much of the program run at once. See
Figure 5.2(a).

The Understanding Code environment, in contrast, presents the entire his-
tory of the program in an unified interface (Figure 5.2(b)). It does this by keep-
ing track of every operation performed by the software when it runs, including
input and output. This means that a programmer can compare multiple states
of the program, and watch the evolution of particular variables. This passive
interface puts the programmer in control.

(a) In a traditional debugger, look-
ing ahead in a program’s execu-
tion completely replaces the previ-
ous state.

(b) In the Understanding Code en-
vironment, multiple states of the
program can be seen at once.

Figure 5.2: Two approaches to handling time. Should this go in analysis?

Sequences of time are ordered and grouped in a few different ways. Within
a particular function, execution typically proceeds down through the code, one
line at a time.

Conditionals (like if-statements) cause certain lines of code to be executed
only under given conditions. In Understanding Code, unexecuted lines are
grayed out. Removing them completely would disorient programmers famil-
iar with the code and expecting to see those lines. (This should be user
tested.)

Loops can cause some lines of code to be repeated multiple times, each time
with potentially different values and behaviors (Figure 5.4).

Need to design and discuss a way of showing multiple iterations of
the loop in succession.

The most important method of organizing programs is that of splitting the
code into functions: named, relatively self-contained pieces that take inputs,
perform a particular task, modify the program’s state and return outputs. The
record of which functions were called, in what order, with what inputs, and by



David A. Mellis – Understanding Code – March 20, 2006(DRAFT) 22

Figure 5.3: An if-statement. The condition x < 100 is true, so the first block
is executed and the second skipped.

Figure 5.4: A loop whose body runs 100 times, each time giving i a new value.
Editing the text box or dragging the slider selects which of these 100 iterations
to show.

which other functions forms the function log, the core of the program history
displayed by Understanding Code. It provides a timeline not of minutes and
seconds, but of structural units. As each function may call many other functions,
this record forms a hierarchical tree (Figure 5.5).

A typical file of source code provides little indication of the relative impor-
tance of its lines. One file may contain dozens of function calls, most of which
perform an unimportant task and a few of which contain most of the work of
the entire program. Understanding Code attempts to visualize this relative im-
portance of various function calls. It does this by displaying a bar next to each
line in the function call record whose length is proportional to the number of
function calls nested beneath that line (Figure 5.6).

A function may be called many times in the course of a program – each time
the same source code operates on (possibly) different inputs and may behave in
different ways. (For example, in Figure 5.5(c), Foo.thing1() was called twice.)
Most software only displays the code: the abstract instructions isolated from
the data it processes. Understanding Code, however, shows the code together
with its values; that is, the programmer can watch the program in action. To
view a portion of the execution, the programmer selects a line from the function
log. Because this line refers to an individual call to the function listed, the data
operated on at that particular moment can be shown. I refer to this function
call and associated data as the live function. The next section describes its
display.

Navigating the call stack.



David A. Mellis – Understanding Code – March 20, 2006(DRAFT) 23

(a) (b) (c)

Figure 5.5: Function log composed of the hierarchical sequence of function call
performed by the program. The functional call named in a line occurred later
in time than the line preceeding it. Each function, however, may contain calls
to other functions.

Figure 5.6: Bars next to each line show the amount of complexity contained
inside the corresponding function; that is, the length is proportional to the
number of function calls that would appear contained beneath that line if it
were fully expanded.



David A. Mellis – Understanding Code – March 20, 2006(DRAFT) 24

Variables and Values

Within the live function, Understanding Code displays a variable’s value along-
side it, using custom interface widgets to embed these values into textual source
code (Figure 5.8). This integration allows the programmer to see the different
values a variable takes on at different points in the code. The display of the
values (which would benefit from further graphical refinement) attempts to be
legible but visually separate, so that the programmer can read just the code if
desired.

This needs user testing. What about showing values as sidenotes
next to the relevant code?

Figure 5.7: The source code of a function: abstract instructions that can be
applied to many different inputs.

Figure 5.8: Variable values integrated into the code. Here, we see the numbers
1, 2, 3, and 4 that were passed into the sum function, and the number 10 which
is returned as its result.

Some variables contain complex data that cannot be easily displayed within
the code itself. In this case, a summary appears instead, which can be clicked
to pop up more details. These details can also be docked to a corner or side
of the Understanding Code interface. This allows the programmer to monitor
changes to its value across different parts of the program.

Searching backwards for changes to a variable.
A crucial debugging is determining how a particular state came about, or

how a variable acquired a particular value. The current Understanding Code
interface offers the ability to search backwards to locate previous changes to a
variable. Additionally, the programmer can filter these results by value – to see,
for example, only places where a numerical value was negative. See Figure 5.10.

This would be a good place for an animation.
Viewing the history of a variable.
Flagging incorrect values (Figure 5.11).



David A. Mellis – Understanding Code – March 20, 2006(DRAFT) 25

Figure 5.9: Popup showing details of a complex variable.

Figure 5.10: Searching backwards through the program’s execution for times
when a variable had a particular range of values.

Figure 5.11: Flags provide an easy way to check whether certain parts of the
code are functioning properly.



David A. Mellis – Understanding Code – March 20, 2006(DRAFT) 26

Connections and Dependencies

Another aspect of a program that’s not apparent from the code is the way in
which the various pieces depend on each other. A programmer hoping to reuse
a particular component in another program, for example, would benefit from
an easy way of determining which other components also needed to be brought
over. Or a programmer about to change a piece of code might want to review
all the places where that code is used. Understanding Code provides an easy
way to see the dependencies between files and functions in a program. In the
list of all the files in the project, the one which is currently open is highlighted.
Arrows point from it to the files it uses, and to it from files that use it. If one of
the functions in the file is currently live (i.e. a particular call to that function
is being shown together with the data it operates on), the file is highlighted
in blue, and the files used by that particular function are pointed to with blue
arrows.

Consider adding ways to jump to or list all the specific dependen-
cies (functions or lines) of a function, file, or line.

Static structure (files).

(a) Dependencies be-
tween files in a project.

(b) Here, files used by
the current live func-
tion are shown in blue.

Figure 5.12: Showing dependencies between parts of a program.

Comparing Versions

For now, see Figure 5.13.
Need to determine the code view for these comparisons as well as

how the versions are managed.
Threads.
Conclusion
Need to consistently scale the figures in this chapter.



David A. Mellis – Understanding Code – March 20, 2006(DRAFT) 27

Figure 5.13: Comparing two runs of the program (different versions of the source
code or on different input).



Chapter 6

Feasibility

The Omniscient Debugger mentioned in the background research provides evi-
dence of the feasibility of collecting a comprehensive record of a program’s exe-
cution and displaying it to the programmer. Though currently only a research
prototype, it could be extended to handle larger and more complex programs.
In particular, in order to reduce the amount of storage needed, portions of the
execution history could be dynamically regenerated when viewed by the pro-
grammer. Or the programmer could select only certain portions of the program
to be logged.

The interface presented in the preceeding chapter could be implemented
with the same information collected by the Omniscient Debugger. More analysis
would be required – in order to show, for example, the dependencies between the
different files of a project. Some parts of the interface require custom interface
components (e.g. the embedding of variables values within source code).

None of these tasks seem substantially harder than those involved in the de-
velopment of the other parts of a programming environment such as Microsoft’s
Visual Studio or the open-source Eclipse.

28



Chapter 7

Evaluation

29



Chapter 8

Conclusion

30



Bibliography

[1] Abelson, Harold, and Gerald Jay Sussman, with Julie Sussman. Structure
and Interpretation of Computer Programs, MIT Press: Cambridge, MA,
1984.

[2] Atkins, David L., ‘Version Sensitive Editing: Change History as a Pro-
gramming Tool’. ECOOP 98, SCM-8, LNCS 1439. Berlin: Springer-Verlag.
1998. 146157,

[3] Baecker, Ron, Chris DiGiano, and Aaron Marcus, ‘Software Visualization
for Debugging’. Communications of the ACM Vol. 40, No. 4, April 1997.
44-54.

[4] Chitil, Olaf, Colin Runciman, and Malcolm Wallace, ‘Freja, Hat and Hood
A Comparative Evaluation of Three Systems for Tracing and Debugging
Lazy Functional Programs’. IFL 2000, LNCS 2011. Eds. M. Mohnen and
P. Koopman, 2001. Berlin: Springer-Verlag. 176193.

[5] Edwards, Jonathon, ‘Example Centric Programming’. OOPSLA04, 24-28
Oct. 2004.

[6] ——, ‘Subtext: Uncovering the Simplicity of Programming’. OOPSLA05,
16-20 Oct., 2005

[7] Goldsmith, Simon, Rober t OCallahan, Alex Aiken. ‘Relational Queries
Over Program Traces’. OOPSLA05, 16-20 Oct., 2005.

[8] Saff, David, and Michael D. Ernst. ‘Reducing wasted development time via
continuous testing’.

[9] Schiffman, Jared. Aesthetics of Computation – Unveiling the Visual Ma-
chine, Master of Science in Media Arts and Sciences at the Massachusetts
Institute of Technology, 2001.

[10] Tung, Sho-Huan Simon, ‘Visualizing Evaluation in Scheme’. LISP and Sym-
bolic Computation, no. 5. 1997. 1-23.

31



Appendix A

Elements of Programming

A short introduction to some programming concepts and vocabularly.
Is this needed at all? Should it be integrated into the main text?

Variables and Values

In a computer program, a variable is place in memory to store data, along with
a name by which to refer to that place. The data stored in a variable is called its
value. Variables may containd different kinds of values: for example, a number
or a sequence of letters. Or a variable may hold a collection of different pieces
of data; e.g. a name and address used to represent a person.

Loops

A loop repeats a certain piece of code (called the body of the loop) while or until
a particular condition is satisfied. For example, a program might do something
with each letter in a text file.

i = 1;
while (i <= 10) {
print(i);
i = i + 1;

}

Figure A.1: A while loop, which repeats while the variable i is less than or
equal to 10. This will print the number 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.

32



David A. Mellis – Understanding Code – March 20, 2006(DRAFT) 33

Conditionals

Function calls

Call stack

Time and Sequence

Files

Dependencies

Bug


