
Statement of Intent

Interaction Design Institute Ivrea

David A. Mellis

September 15, 2005

Writing a computer program is like trying to assemble a grandfather clock,
blindfolded, without being sure that one has all the parts. That is, it requires
the coordination of countless intricate pieces with no good way of observing the
functioning of the whole. Put one tiny part in the wrong place and everything
stops, but you can only discover the error by probing each part of the system
in turn, memorizing the numerous linkages, combinations, and movements. It’s
a wonder any programs ever work.

Software needn’t be so. No physical constraints govern the arrangement of its
components. Nothing need be hidden from view behind a decorative covering.
Only our ingenuity limits the number of ways we can recombine different pieces,
the tools we can use on them, the ways we look at their operation. As Fred
Brooks has said, “the programmer, like the poet, works only slightly removed
from pure though-stuff. He builds his castles in the air, from the air, creating
by exertion of the imagination.”

It falls to us, then, the makers and users of programming languages, li-
braries, environments, to decide which tools we need, how they should function,
and what they should look like. The ones we have now are just starting to adjust
their forms to the problems we are trying to solve and the behaviors we are try-
ing to understand. Originally, they were primitive, general-purpose instruments:
the text editor knew nothing of the programming language; the operating sys-
tem cared little for one’s source code. Now connections are beginning to form:
editors display variables in a different color from strings, comments with less
saturation than function calls; a program crash often comes with a list of the
lines of code immediately preceding the disaster; syntax errors in a source file
get a squiggly red underline as you type; one can edit the code of a running
program; even record every function called, variable modified, input received.

And yet, there is no equivalent to opening the case of the clock and watching
it tick out the seconds, swaying pendulum letting rotate a gear, that regulating
the revolutions of another, slower, one, and that a third, and a fourth, chains
driving the hands from behind, the whole ballet powered by a slowly descending
weight. We cannot watch a whole program at work.

Of course, there are difficulties. Software is orders of magnitude more com-
plex than even the most intricate clock. It is made of text - words that become

1



meaningless at a distance. It runs inconceivably fast, so that we cannot possi-
bly examine each of its actions individually. It is made of heterogeneous parts,
written by different people in different languages with varying degrees of se-
crecy. It is written under pressure, changed often, and required to work under
wide-ranging conditions, with a menagerie of accessories and managers.

Still, reasons exist for hope. As computers get faster and the complexity of
their software increases, so too do the resources it offers us to understand and
assemble our code. We constantly find new abstractions that allow program-
mers to work at higher and higher levels, and to reuse more and more mature
technology. As we learn that programmers are people too, we can successfully
apply to them many of the principles that help ordinary people use all types of
software.

As a programmer and interaction designer, I want to continue to do just that
- apply HCI techniques and principles to the design of programming tools. To
create scenarios that illuminate the tasks, needs, and capabilities of program-
mers. To design tools that account for those factors. To test and refine those
designs. To point out areas in which even faster machines or smarter algorithms
are needed. To help expose the inner workings of our programs. To build better
castles in the air.

2



David A. Mellis – IDII – September 15, 2005

Research Questions

1. What tools and techniques do working programmers use to understand
the structure and functioning of a program?

2. How can the principles of interaction design be applied to the practice of
programming?

3. How can the programmer’s view of a program – its source code – provide
an interface to the computer’s view of a program – its execution?

4. How can programming environments support exploration and experimen-
tation (in addition to abstract reasoning) in the creation and understand-
ing of code?

Context

This work concerns itself with professional programs working on real soft-
ware. Designs will be evaluated not on their own merits, but considering their
usefulness on actual programs. That said, research does not require complete,
robust, and scalable implementations but can be fruitfully applied to prototypes
or even non-interactive designs. The principles thus learned must be applicable,
however, to the construction of commercial-quality software.

Project Plan

15–30 September Background research collection and documentation.
October Exploration I: design and prototype.
November Exploration II: design and prototype.
December Evalution, reflection, and proposal for primary prototype.
January to April Implementation of primary prototype.
May Evaluation, reflection, and documentation.

3


