
Understanding Software

Interaction Design Institute Ivrea

David A. Mellis

October 18, 2005

A discussion of various techniques for understanding the source code and
execution of computer programs.

1 Algorithm/Program Visualization

Graphic representations of the execution of a program. Various parts of
the state of the program are shown, with time represented as a spatial axis or
through animation.

Figure 1: Algorithm Visualization from Sorting out Sorting.

1



For example, in the visualization of a sorting algorithm, the items to be
sorted are often shown as a row of lines of varying lengths. Items being directly
compared are highlighted and may be swapped. As the algorithm progresses, its
working may be understand by noticing which lines are moved and which parts
of the group are sorted first. Eventually, the lines are in order from shortest to
longest.

Algorithm visualizations are often custom made for educational use to allow
students to examine and compare the workings of various algorithms. The
amount of time required to create a useful visualization makes them difficult to
use as a general purpose tool.

Algorithm visualizations have become more interactive as the the educa-
tional benefits of allowing students to experiment have been realized. What
You See Is What You Code, by Hundhausen and Brown describes a system in
which the visualization and code are kept continuously in sync, allowing for easy
manipulation of either.

A related technique is program visualization. This attempts to visualize
program execution generically by displaying, for example, a color-coded view of
the memory used during execution. Or a diagram may describe the relationship
of various functions (e.g. the time spent in each, and which are called from
which others). Because of their lack of specificity, these tools are only helpful
in limited circumstances.

2 Visual Programming

A method for constructing programs visually instead of textually. Typically,
various graphical symbols represent different features of a program, such as
variables, control structures, etc.

In Aesthetics of Computation: Unveiling the Visual Machine (2001), Jared
Schiffman describes several of his excellent visual programming interfaces, in-
cluding Plate, in which traditional textual constructs are placed on plates, with
designated holes with which to fill in values or other statements; and Pablo,
a data-flow language in which operations are visually linked together into pro-
grams, through which values flow during execution. Schiffman also offers several
important principles for visual programming environments. He places primary
importance on continuity, including an unified visual space, single visual lan-
guage, continuity of composition and execution, integration of machine (i.e.
code) and materials (values), and continuity of animation. My research seeks
to discover what these principles mean for text-based languages.

3 Traditional Debuggers

Traditional debuggers keep track of the correspondence between the source
code of a program and the machine code it generates. Thus, they can, for
example, halt the execution of a program when a particular line of code (called
a breakpoint) is reached. Then the programmer can examine the state of the
program’s memory, which the debugger can map back to variables in the code.

2



Figure 2: Pablo in the midst of evaluating a function. On the right, a function
call has been expanded through the creation of another box.

Lines of code can be executed one at a time (stepped through), or function
call can be stepped into. Some debuggers allow breakpoints to be specified for
certain conditions (e.g. using an undefined variable) as well particular lines.

Debugging using a traditional debugger can be a very awkward and time
consuming process. The most important step is locating the bug. This usually
requires guessing many possible circumstances which could create it, stopping
the debugger at each one (which might mean repeatedly stepping through a
piece of code until the desired condition appears), examining the contents of
many different variables (often in a difficult to read form), and slowly advancing
through the code to see if the bug appears. Click the wrong button and execution
can skip right past the area of interest, requiring a restart of the entire process.

Another problem is the number of distinct pieces of information that must
be integrated by the programmer. A debugger shows the values of variables in
one window, the program’s output in another, the current stack of function calls
in a third, program threads in a fourth, with only a small amount of room left
over for the source code itself, whose repair is the object of the whole process.
Recently, debuggers have begun integrating more information into the source
code window, by, for example, displaying the value of a variable when the mouse
cursor hovers over it. My research furthers this process, revealing programmers
of the cognitive burden of combining many small facets of the program’s state.

4 Tracing Debuggers

These debuggers insert into a program code to keep track of various events
in its execution, such as a function call or variable assignment. The resulting

3



Figure 3: The default debugging perspective in the popular Jave IDE Eclipse.
Notice the small portion of the screen devoted to source code.

record is called a “trace.” Increasing processor speed, hard drive capacities and
higher level languages are beginning to make it practical to record practically
every significant occurence in the execution of a program, allowing the program-
mer to explore backwards and forwards in time. For example, the Omniscient
Debugging project has released a tracing debugger for Java, and they also exist
for functional languages such as Haskell and OCaml.

The availability of such large amounts of data demands careful attention to
the design of the method for exploring it. Goldsmith, O’Callahan, and Aiken,
in Relational Queries Over Program Traces, describe a method for building a
querying a database of function calls using a SQL-like language. They provide
examples of how this technique can be used to detect performance problems and
answer other programmer questions.

5 Language-Aware Editing

Previously, source code was mainly edited with generic text-editors. That
is, the program had no specific knowledge of the structure or syntax of the
programming language or the purpose or form of the code. Now many tools can

4



Figure 4: Omniscient debugging. The left and right arrows step forwards and
backwards through the execution of the program.

offer services based on an understanding of the program being edited. These
include:

• White-space: most compilers ignore most white-space; it is, however, cru-
cial to the legibility of code and many editors will help keep it consistent.

• Comments: ignored by the compiler, but may be auto-generated or orga-
nized by the editor.

• Syntax highlighting: the display of different pieces of a program in different
colors. For example, comments might be displayed in gray, strings in red,
keyword in blue.

• Version history / diffs: an editor might display lines changed by the pro-
grammer, or the amount of editing a section of code has undergone.

• Error highlighting: some environments (e.g. Eclipse) will incrementally
compile code as it is edited, highlighting syntax errors as they occur (e.g.

5



with a red underline).

• Command completion (dropdown lists): editors can automatically com-
plete partially-typed names, or display a list of possible options.

• UML and auto-generated class diagrams.

• Links/related sections of code: for example, the place in which the cur-
rently selected variable was defined.

• Refactoring: the ability to perform simultaneous, distributed edits to large
bodies of code (e.g. renaming a variable or reordering the arguments to a
function).

In 1997, Baecker, DiGiano, and Marcus argued that editors could use visual
display and organization to provide even more assistance (Software Visualization
for Debugging):

“A large real program is an information narrative in which the components
should be arranged in a logical, easy-to-find, easy-to-read, easy-to-remember
sequence. The reader should be able to quickly find a table of contents to the
document, determine its parts, identify desired sections, and find their locations.
Within the source text, the overall structure and appearance of the page should
furnish clues regarding the nature of the contents.”

Managing Duplicated Code with Linked Editing (2003) by Toomim, Begel,
Graham presents Codelink, a tool for creating, maintaining and editing linked
sections of code (i.e. unrefactored sections of code which have much text in
common but also include differences). Allows programmers to make consistent
changes across related sections of code without the cognitive overhead of re-
structuring or abstracting them. Drastically lowers the time required to relate
sections of code (vs. abstraction). Most code bases have lots of duplication (e.g.
15-25% in the Linux kernel; 9% in GCC; 21-29% in Sun’s JDK).

Clones are created by selecting a block of text, then selecting similar blocks
of text while holding the Control key. Equivalent sections of the clone are
shown with blue backgrounds, differences with yellow backgrounds. A checkbox
(“Linked Editing”) toggles between linked and individual editing. During linked
editing, the cursor becomes a block and ghost cursors (in blue) appear at the
corresponding sections of the other clones. During individual editing, the cursor
is a bar and ghost cursors disappear. Shared sections of clones can be elided so
that only the differences are visible.

The authors would like to add support for moving back-and-forth between
linked coded and higher level language abstractions as well as for the automatic
creation of linked sections through copy-and-paste or automatic clone detection
tools.

Codelink was developed on top of Harmonia, a flexible, extensible system
for creating language aware tools.

Some projects have taken an extreme perspective on language-aware editing,
creating environments that do not allow any text editing. These include Pablo,

6



discussed above, and Subtext. Subtext is an environment with no distinction
between editing and running a program. The value of a variable is determined
by its links to other variables and functions; whenever those links are changed,
the values of all variables are immediately updated. Thus, all results of the
program are visible as it is being modified. Additionally, all edits are made
via links, that is, essentially, to the structure of the code rather than its textual
expression. This means that the program is always syntactically correct and can
evaluated at all times, and that names are not needed to execute, and are free
to be used or not by the programmer as descriptive devices. Also, by keeping
track of copies and pastes in the code, Subtext allows duplicates to be managed
in similar ways to Codelink.

6 Testing

A newly popular technique for checking program correctness is known as
“unit testing.” A unit test checks the correctness of a single unit of code in a
self-contained manner. This makes them easy to run quickly and an excellent
source of examples with which to attempt to understand code. My research
seeks to exploit unit tests for programmers trying to understand how code works
instead of simply checking it for correctness.

Saff and Enrst have developed a technique (described in Reducing wasted
development time via continuous testing) for continuously running tests as a
program is edited, saving developer from wasting time waiting for tests to run
or remaining ignorant of program bugs for long periods of time (making them
harder to fix). This suggests that it may be feasible to display state information
from program execution while code is being edited. For a given unit test, a
programmer could see, perhaps, the values of the variables in the code being
edited, metaphorically flowing over the program in a method similar to that of
Pablo.

7 Code Evolution

The way a program evolved can be invaluable in understanding how it works.
The following papers offer ideas for making use of the revision history of a piece
of software.

CVSSearch: Searching through Source Code using CVS Comments (2001)
A tool for searching a project’s source code and associated CVS comments.

Initially displays a list of matching files with number and types of match (source
or CVS comment) for each. Clicking a file summons a vertically-split view: lines
matching the search on the left, full source on the right. Clicking a line on the
left scrolls the right to the corresponding location and displays the associated
CVS comment at the bottom of the window. Lines that more strongly match
the search query are displayed with progressively darker backgrounds.

Also presented are techniques for associated comments with lines of code
through multiple revisions and building a database from the CVS history, as
well interesting statistics on the size, number of revisions per file, number of

7



Figure 5: Visualization of test results from Tarantula. Lines of source code that
pass tests are shown in green, failing lines in red.

CVS comments per line of multiple KDE projects.
The interface is rudimentary, but the idea good. How can CVS comments

be used to provide a more conceptual and historical overview of a line or section
of code? What about a tool that simply displays a log of CVS revisions and
comments with links to or summaries of the corresponding changes?

Version Sensitive Editing: Change History as a Programming Tool (1998)
David L. Atkins discusses VE, a tool which displays version history during

editing of source code. This interface uses simple visual characteristics to high-
light the most important aspects of the revision history of a line. In particular,
changes made to the working copy of the code (i.e. since the last committed
version) are shown in bold, previously-deleted lines, when requested, are un-
derlined, and non-approved code is shown in italics. The date and comment
associated with the latest revision of a line are shown in addition to the line
number. The programmer can adjust the criteria which determine which lines
receive a particular appearance.

The paper provides two realistic examples of the usefulness of this tool to
the programmer: finding a bug by correlating dates of revisions of lines with the

8



Figure 6: VE, which shows revision information as code is edited. Lines changed
by the programmer are bold, deleted lines are underlined.

occurence of the bug, and coordinating edits with a programmer whose changes
have not yet been approved. How might such a system work if not constrained
by the limitations of Emacs and Vi?

From In Search of a Simple Visual Vocabulary (1995)
“So we can visualize program executions as a series of space-maps. But a

series of space-maps is itself just a space-map – a space-map being any arrang-
ment of regions in a space of arbitrary dimensions. We can manipulate this
history using the same construction, deconstructions and evaluation rules that
we use for any other data object. A program history can be used as data for
visualizing program execution, debugging and communication.”

Questions

How to display an overview of large amounts of code? What do you see
half-way between code and diagram?

How to distinguish static code from dynamic values?
How to show a change in the state of the program (e.g. assignment of a

value to a variable)? How to watch the progression of a variable or other aspect
of program state?

9



How to show nested function calls? How to show repeated execution of a
block?

How to specify an “interesting” event (e.g. call to a particular function with
certain arguments, particular exception, execution of a specific statement)? How
to specify the useful context of an event?

How to show (revision) history of code? The programmers explanation is
invaluable to understanding a piece of code. How do I incorporate it?

Tools for programmers are made by their users; why then are they badly
designed?

Why do programmers think that graphical/visual programming tools dont
scale to large programs? What work has been done in this area?

Are there any small, precise visualizations that could be useful, perhaps
something like sparklines or thread arcs?

10


