
Thesis Report

Tangible Code

David A. Mellis
Interaction Design Insitute Ivrea

http://dam.mellis.org/thesis/
dam@mellis.org

May 22, 2006

Neil Churcher
Thesis Advisor

Director and Chair of Examiners

Yaniv Steiner
Thesis Advisor

Phil Tabor
Report Advisor

Heather Martin
Director and Chair of Examiners

Abstract

Tangible Code

David A. Mellis

Current methods for debugging and reading source code impose too much cog-
nitive burden on programmers. This report presents the design of a tool for
exploring a program’s behavior, making tangible actions and constructions that
previously existed only in the mind of the programmer. It provides a uni-
fied interface that exposes an overview of the code’s execution, connections
between and relative importance of different pieces of the program, and the
exact, step-by-step computations performed by the software. By making it eas-
ier to understand code, an implementation of this interface would increase the
maintainability and extensibility of existing programs.

a Ivrea la Bella

Acknowledgements

To Neil Churcher, for helping me plan, analyze and communicate my work in
his own precise, inscrutable way.
To Yaniv Steiner, for challenging me to defend my ideas.

To Heather Martin, my non-thesis advisor.
To Massimo Banzi, for distracting me with a good project.

To Gillian Crampton-Smith and Phil Tabor, for giving these two years a solid
foundation.

To Elena Baratono, for trying to teach me Italian.
To Silvia Rollino, the soul of IDII.

To Aram, Haiyan, James, and Vinay for teaching me as much as my classes.

To Paul, Doug, and Lee for their patience and insight.

To all the current and former students, faculty, and staff who made Interaction-
Ivrea what it was.

Contents

1 Introduction 4

2 Background Research 6
2.1 Language-Aware Editing . 6
2.2 Code Evolution . 8
2.3 Testing . 9
2.4 Logging . 10
2.5 Traditional Debuggers . 10
2.6 Tracing Debuggers . 11
2.7 Algorithm/Program Visualization 12
2.8 Visual Programming . 13
2.9 Live Programming . 14

3 Explanatory Prototype 16
3.1 Introduction to Scheme . 16
3.2 How it Works . 17
3.3 Implementation . 17
3.4 Discussion . 18
3.5 Questions . 18

4 Analysis 19
4.1 Frustrations with Current Tools 19
4.2 Breakdown of the Debugging Process 20
4.3 Other Motivations for Understanding Code 21
4.4 Interface Metaphors . 21
4.5 Debugging Scenario . 23

5 Interface Design 25
5.1 Function Log and Timeline . 26
5.2 Live Function . 27
5.3 Flagging . 29
5.4 Search and Traces . 30
5.5 File Listing and Dependencies . 31

6 Feasibility 34

7 Evaluation 35

8 Conclusion 37

3

Chapter 1

Introduction

Writing a computer program is like trying to assemble a grandfather clock,
blindfolded, without being sure that one has all the parts. That is, it requires
the coordination of countless intricate pieces with no good way of observing the
functioning of the whole. Put one tiny part in the wrong place and everything
stops, but you can only discover the error by probing each part of the system
in turn, memorizing the numerous linkages, combinations, and movements. It’s
a wonder any programs ever work.

Software needn’t be so. No physical constraints govern the arrangement of its
components. Nothing need be hidden from view behind a decorative covering.
Only our ingenuity limits the number of ways we can recombine different pieces,
the tools we can use on them, the ways we look at their operation. As Fred
Brooks has said, “the programmer, like the poet, works only slightly removed
from pure thought-stuff. He builds his castles in the air, from the air, creating
by exertion of the imagination.”

It falls to us, then, the makers and users of programming languages, li-
braries, environments, to decide which tools we need, how they should function,
and what they should look like. The ones we have now are just starting to adjust
their forms to the problems we are trying to solve and the behaviors we are try-
ing to understand. Originally, they were primitive, general-purpose instruments:
the text editor knew nothing of the programming language; the operating sys-
tem cared little for one’s source code. Now connections are beginning to form:
editors display variables in a different color from strings, comments with less
saturation than function calls; a program crash often comes with a list of the
lines of code immediately preceding the disaster; syntax errors in a source file
get a squiggly red underline as you type; one can edit the code of a running
program; even record every function called, variable modified, input received.

And yet, there is no equivalent to opening the case of the clock and watching
it tick out the seconds, the swaying pendulum letting rotate a gear, that reg-
ulating the revolutions of another, slower, one, and that a third, and a fourth,
chains driving the hands from behind, the whole ballet powered by a slowly
descending weight. We cannot watch a whole program at work.

Of course, there are difficulties. Software is orders of magnitude more com-
plex than even the most intricate clock. It is made of text – words that become
meaningless at a distance. It runs inconceivably fast, so that we cannot possi-
bly examine each of its actions individually. It is made of heterogeneous parts,

4

David A. Mellis – Tangible Code – May 22, 2006 5

written by different people in different languages with varying degrees of se-
crecy. It is written under pressure, changed often, and required to work under
wide-ranging conditions, with a menagerie of accessories and managers.

Still, reasons exist for hope. As computers get faster and the complexity of
their software increases, so too do the resources it offers us to understand and
assemble our code. We constantly find new abstractions that allow program-
mers to work at higher and higher levels, and to reuse more and more mature
technology. As we learn that programmers are people too, we can successfully
apply to them many of the principles that help ordinary people use all types of
software.

This thesis attempts to do just that: show how an understanding of the
goals and mindsets of programmers can be used to design tools to help them
understand the dynamic behavior of their programs. It attempts to reduce the
cognitive burden on programmers by suggesting how knowledge and reasoning
could be shifted from their heads into a tool. By making it easier to read as
well as write code, it hopes to ease the reuse and debugging of existing source.

Because this work concerns reading and understanding - not writing - code,
it develops tools for traditional programming languages like C/C++ and Java.
The prevelance of these languages and the large amounts of existing programs
written in them suggests that such tools will be necessary for the conceivable
future.

This report first reviews background research, discussing the limitations of
current tools for understanding programs and drawing inspiration from related
areas of work. Chapter 3 presents a prototype created early on to delimit and
explain the focus of this thesis. Chapter 4 analyzes the process of understanding
and debugging software, both as an aid for non-technical readers and as an
essential step in determining the requirements for the design of the software
tool presented in Chapter 5. This interface is the primary product of thesis,
a proposal for understanding the complexity of the behavior of an executing
piece of software. Chapter 6 discusses the technical feasibility of such a tool
and Chapter 7 evaluates its usefulness. Finally, Chapter 8 discusses the lessons
learned from this thesis process.

Chapter 2

Background Research

A discussion of tools for creating, analyzing, and understanding code and other
methods of instructing the computer.

2.1 Language-Aware Editing

Previously, source code was mainly edited with generic text-editors. That is,
the program had no specific knowledge of the structure or syntax of the pro-
gramming language or the purpose or form of the code. Now many tools can
offer services based on an understanding of the program being edited. These
include:

• White-space: most compilers ignore most white-space; it is, however, cru-
cial to the legibility of code and many editors will help keep it consistent.

• Comments: ignored by the compiler, but may be auto-generated or orga-
nized by the editor. Some systems, like Javadoc, convert specially format-
ted comments into hypertext documentation.

• Syntax highlighting: the display of different pieces of a program in different
colors. For example, comments might be displayed in gray, strings in red,
keyword in blue.

• Version history / diffs: an editor might display lines changed by the pro-
grammer, or the amount of editing a section of code has undergone.

• Error highlighting: some environments (e.g. Eclipse) will incrementally
compile code as it is edited, highlighting syntax errors as they occur (e.g.
with a red underline).

• Command completion (dropdown lists): editors can automatically com-
plete partially-typed names, or display a list of possible options.

• UML and auto-generated class diagrams.

• Links/related sections of code: for example, the place in which the cur-
rently selected variable was defined.

6

David A. Mellis – Tangible Code – May 22, 2006 7

• Refactoring: the ability to perform simultaneous, distributed edits to large
bodies of code (e.g. renaming a variable or reordering the arguments to a
function).

(a) A generic text editor with no un-
derstanding of the code being edited.

(b) Xcode parses, indexes, and for-
mats the code being edited.

Figure 2.1: The evolution of code editors.

In “Software Visualization for Debugging,” Baecker, DiGiano, and Marcus
argued that editors could use visual display and organization to provide even
more assistance:

“A large real program is an information narrative in which the components
should be arranged in a logical, easy-to-find, easy-to-read, easy-to-remember
sequence. The reader should be able to quickly find a table of contents to the
document, determine its parts, identify desired sections, and find their locations.
Within the source text, the overall structure and appearance of the page should
furnish clues regarding the nature of the contents.”

“Managing Duplicated Code with Linked Editing” by Toomim, Begel, Gra-
ham presents Codelink, a tool for creating, maintaining and editing linked sec-
tions of code (i.e. unrefactored sections of code which have much text in common
but also include differences). It allows programmers to make consistent changes
across related sections of code without the cognitive overhead of restructuring or
abstracting them. Clones are created by selecting a block of text, then selecting
similar blocks of text while holding the Control key. Equivalent sections of the
clone are shown with blue backgrounds, differences with yellow backgrounds. A
checkbox toggles between linked and individual editing. During linked editing,
the cursor becomes a block and ghost cursors (in blue) appear at the corre-
sponding sections of the other clones. During individual editing, the cursor is
a bar and ghost cursors disappear. Shared sections of clones can be elided so
that only the differences are visible.

David A. Mellis – Tangible Code – May 22, 2006 8

2.2 Code Evolution

The way a program evolved can be invaluable in understanding how it works.
The following papers offer ideas for making use of the revision history of a piece
of software.

In “Version Sensitive Editing: Change History as a Programming Tool,”
David L. Atkins discusses VE, a tool which displays version history during edit-
ing of source code. This interface uses simple visual characteristics to highlight
the most important aspects of the revision history of a line. In particular,
changes made to the working copy of the code (i.e. since the last committed
version) are shown in bold, previously-deleted lines, when requested, are un-
derlined, and non-approved code is shown in italics. The date and comment
associated with the latest revision of a line are shown in addition to the line
number. The programmer can adjust the criteria which determine which lines
receive a particular appearance.

Figure 2.2: VE, which shows revision information as code is edited. Lines changed by
the programmer are bold, deleted lines are underlined.

The paper provides two realistic examples of the usefulness of this tool to
the programmer: finding a bug by correlating dates of revisions of lines with
the occurence of the bug, and coordinating edits with a programmer whose
changes have not yet been approved. The software was, however, limited to
basic typographic and interface capabilities.

“CVSSearch: Searching through Source Code using CVS Comments” de-
scribes a tool for searching a project’s source code and associated comments
written when changes were committed to the source code versioning repository
CVS. Initially displays a list of matching files with number and types of match
(source or CVS comment) for each. Clicking a file summons a vertically-split

David A. Mellis – Tangible Code – May 22, 2006 9

view: lines matching the search on the left, full source on the right. Clicking a
line on the left scrolls the right to the corresponding location and displays the as-
sociated CVS comment at the bottom of the window. Lines that more strongly
match the search query are displayed with progressively darker backgrounds.

The interface is rudimentary, but the idea good. CVS comments tend to
summarize and explain code changes and are a valuable reference for anyone
looking to understand a program. This is a step towards making them more
available when needed.

2.3 Testing

A popular technique for checking program correctness is known as “unit testing.”
A unit test checks the correctness of a single unit of code in a self-contained
manner. They can be used to ensure that changes or additions to a component
don’t change existing behavior. They are easy to run quickly and an excellent
source of examples with which to attempt to understand code.

Saff and Enrst have developed a technique (described in “Reducing Wasted
Development Time via Continuous Testing”) for continuously running tests as a
program is edited, saving developers from wasting time waiting for tests to run
or remaining ignorant of program bugs for long periods of time (making them
harder to fix). This suggests that it may be feasible to display state information
from program execution while code is being edited.

Figure 2.3: Visualization of test results from Tarantula. Lines of source code that pass
tests are shown in green, failing lines in red.

David A. Mellis – Tangible Code – May 22, 2006 10

Tarantula visualizes test results using the code tested (Figure 2.3). The more
tests a particular line failed, the more red it is; the more passed, the greener;
lines that pass and fail are yellow; untested lines, gray.

2.4 Logging

In situations in which debugging tools are unavailable or inadequate, program-
mers often add print or logging statements to their code. By reviewing the
output, they get a sense of the behavior of the program. This technique re-
quires little setup and can be used in a wide variety of situations. It is often,
however, arbitrary and ad-hoc, with the debugging statements added each time
they’re needed, and having meaning only to the programmer who inserted them.
It doesn’t scale well to problems involving the interactions of many different
components, nor to work in teams.

2.5 Traditional Debuggers

Figure 2.4: The default debugging perspective in the Apple’s IDE Xcode. Execution
is paused at a particular line of code, indicated by the red arrow to its left. Above
are the call stack (sequence of function calls leading to the current one) and watch
window (showing the current values of variables).

Traditional debuggers keep track of the correspondence between the source
code of a program and the machine code it generates. Thus, they can, for
example, halt the execution of a program when a particular line of code (called
a breakpoint) is reached. Then the programmer can examine the state of the
program’s memory, which the debugger can map back to variables in the code.
Lines of code can be executed one at a time (stepped through), or function

David A. Mellis – Tangible Code – May 22, 2006 11

call can be stepped into. Some debuggers allow breakpoints to be specified for
certain conditions (e.g. using an undefined variable) as well as particular lines.

Different interfaces use this same paradigm. Originally, such debuggers were
driven by textual command prompts. Now, most IDEs include a debugger with
a graphical interface, but with similar functionality.

2.6 Tracing Debuggers

These debuggers instrument a program’s code and keep track of various events
during its execution, such as function calls and variable assignments. The result-
ing record is called a “trace.” Increasing processor speed, hard drive capacities
and higher level languages are beginning to make it practical to record practi-
cally every significant occurence in the execution of a program. This allows the
programmer to run a program, interact with it, load the program trace in the
debugger, and explore backwards and forwards in this record of the program’s
execution.

The Omniscient Debugging project has released a tracing debugger for Java,
and they also exist for functional languages such as Haskell and OCaml.

Figure 2.5: Omniscient Debugging. The left and right arrows step forwards and back-
wards through the execution of the program.

The availability of such large amounts of data demands careful attention to
the design of the method for exploring it. Goldsmith, O’Callahan, and Aiken, in
“Relational Queries Over Program Traces”, describe a method for building and
querying a database of function calls using a SQL-like language. They provide
examples of how this technique can be used to detect performance problems and
answer other programmer questions.

David A. Mellis – Tangible Code – May 22, 2006 12

2.7 Algorithm/Program Visualization

In graphic representations of the execution of a program, various parts of the
state of the program are shown, with time represented as a spatial axis or
through animation.

Figure 2.6: Algorithm Visualization from Sorting out Sorting.

For example, in the visualization of a sorting algorithm, the items to be
sorted are often shown as a row of lines of varying lengths. Items being directly
compared are highlighted and may be swapped. As the algorithm progresses, its
working may be understand by noticing which lines are moved and which parts
of the group are sorted first. Eventually, the lines are in order from shortest to
longest.

Algorithm visualizations are often custom made for educational use to allow
students to examine and compare the workings of various algorithms. The
amount of time required to create a useful visualization makes them difficult to
use as a general purpose tool.

Algorithm visualizations have become more interactive as the the educa-
tional benefits of allowing students to experiment have been realized. What
You See Is What You Code, by Hundhausen and Brown describes a system in
which the visualization and code are kept continuously in sync, allowing for easy
manipulation of either.

A related technique is program visualization. This attempts to visualize
program execution generically by displaying, for example, a color-coded view of
the memory used during execution. Or a diagram may describe the relationship
of various functions (e.g. the time spent in each, and which are called from
which others). Because of their lack of specificity, these tools are only helpful

David A. Mellis – Tangible Code – May 22, 2006 13

in limited circumstances.
One example of a program visualization is Code Profiles by W. Bradford

Paley (Figure 2.7. Created as a part of the CODeDOC online exhibit of software
art, Code Profiles attempts to provide the general public a sense of the visualized
program’s activity rather than serve as a practical tool for programmers.

Figure 2.7: Code Profiles. The curves connect lines of the program’s source code in
their order of execution and slowly fade out over time.

2.8 Visual Programming

Visual programming is a method for constructing programs visually instead of
textually. Typically, various graphical symbols represent different features of a
program, such as variables, control structures.

In Aesthetics of Computation: Unveiling the Visual Machine, Schiffman de-
scribes several of his visual programming interfaces, including Plate, in which
traditional textual constructs are placed on plates (two-dimensional movable
blocks), with designated holes with which to fill in values or other statements;
and Pablo, a data-flow language in which operations are visually linked to-
gether into programs, through which values flow during execution. Schiffman
also offers several important principles for visual programming environments.
He places primary importance on continuity, including an unified visual space,
single visual language, continuity of composition and execution, integration of
machine (i.e. code) and materials (values), and continuity of animation. This
thesis attempts to apply these principles to text-based languages.

David A. Mellis – Tangible Code – May 22, 2006 14

Figure 2.8: Pablo in the midst of evaluating a function. On the right, a function call
has been expanded through the creation of another box.

2.9 Live Programming

Some programming environments provide a different sort of continuinity by
making no distinctions between the process of editing, compiling, and running
code. That is, the current state of the program is visible at all times, and updates
automatically as the code changes. An familiar example is a spreadsheet, in
which cells containing formulas constantly recompute and display the correct
value as other cells are changed (Figure 2.9).

Figure 2.9: Spreadsheet formulas update continuously as other cells change value.

David A. Mellis – Tangible Code – May 22, 2006 15

Subtext extends these ideas to more general programming constructs. The
value of a variable is determined by its links to other variables and functions;
whenever those links are changed, the values of all variables are immediately
updated. Thus, all results of the program are visible as it is being modified.
Additionally, all edits are made via links, that is, essentially, to the structure
of the code rather than its textual expression. This means that the program is
always syntactically correct and can be evaluated at all times, and that names
are not needed to execute, and are free to be used or not by the programmer
as descriptive devices. Also, by keeping track of copies and pastes in the code,
Subtext allows duplicates to be managed in similar ways to Codelink.

Figure 2.10: Subtext in the process of making a link.

Chapter 3

Explanatory Prototype

To ground my thesis and explain its domain to a non-programming audience,
I began by creating an explanatory prototype. It provides an example of a
non-graphical visualization of program behavior, using code (the medium of
programming) as an interface to explore computation.

3.1 Introduction to Scheme

The prototype took the form of a debugging interface to the Scheme program-
ming language (a dialect of Lisp). I choose Scheme because it uses the same
simple (if strange-looking) syntax for every operation: nested, parenthesized
expressions, each containing an operation followed by its arguments – e.g. (+ 1
2 3) adds the numbers one, two, and three to get six. This uniformity meant
that I could use a single technique to provide interactions with any code.

Part of the power of Scheme comes from its interactive environment (known
as a REPL: “read-eval-print loop”), which allows a programmer to type in a
Scheme expression and immediately view its resulting value, without the need
for any intermediate steps such as compiling or running the program. This
rapid evalution allows a programmer to quickly try out a library of code or test
a newly written function.

> (define (factorial x)
> (if (< x 1)
> 1
> (* x (factorial (- x 1)))))
> (factorial 3)
6

Figure 3.1: Transcript of an interactive session with a Scheme interpreter. Lines pre-
fixed with a “>” were typed by the programmer; others are responses by the interpreter.
In this case, the programmer defined a function to compute the factorial of a number.
Then the programmer used it to compute the factorial of 3 (which is 6).

If, however, the programmer doesn’t understand how the expression typed
yielded the value returned, Scheme environments provide no easy method for

16

David A. Mellis – Tangible Code – May 22, 2006 17

digging deeper into the code’s execution. My prototype reveals the entire chain
of computation to the programmer for exploration.

3.2 How it Works

A basic set of interactions allows for exploration of the computation performed
by a program. Clicking a value expands the code that calculated it. The click-
able values are underlined, similar to hyperlinks on a web page. Values of
variables are shown in blue, and hovering over them with the mouse shows the
variable’s name. Code that wasn’t executed is grayed out.

For example, the initial result of 6 expands into (factorial 3) (the function
call that calculated it), followed by (if (= 3 1) 1 (* 3 2)) (the body of that
function). Here, the 2 is also the result of a calculation, and clicking it will reveal
that code.

> (factorial 3)
6

> (factorial 3)
6
|
(factorial 3)
(if (= 3 1)

1
(* 3 2))

> (factorial 3)
6
|
(factorial 3)
(if (= 3 1)

1
(* 3 2))

|
(factorial 2)
(if (= 2 1)

1
(* 2 1))

.

.

.

Figure 3.2: Expanding the function calls.

3.3 Implementation

Initially, the prototype consisted of a simple, hand-coded web page. Hyperlinks
triggered short Javascript functions that expanded or collapsed the relevant
sections of code. HTML offers a straightforward, precise control of typogra-
phy, layout, and behavior that’s difficult to achieve with either graphic design
software like Adobe Illustrator or by programming a desktop application.

Additionally, the use of HTML eased the transition into the second, working
prototype. This version allows a programmer to enter arbitrary Scheme code
(with some limitations) and navigate the resulting computation in the same way
as in the first, canned prototype. The interface consists of similar webpages,
but in this case, they are dynamically generated by a Scheme program. Here, a
second property of Scheme was also essential – namely, the existence of simple,

David A. Mellis – Tangible Code – May 22, 2006 18

freely available Scheme programs to parse and execute Scheme code. I modi-
fied one from Abelson and Sussman’s Structure and Interpretation of Computer
Programs to record the program’s computations and output them as HTML.

3.4 Discussion

This process is distinct from those of writing and running code. Like reading a
map, it involves following trails, finding connections, and seeing how different
parts fit together. As with an online map, it allows one to zoom in on differ-
ent pieces. In short, it is a mirror or visualization of the actual computation
performed by a program that is:

• specific to a particular execution on particular values,

• a passive recording of past activity, and

• structured.

The code itself, in contrast, is abstract, requiring more effort by the pro-
grammer to deduce its behavior for a given input. Traditional debuggers sus-
pend a program’s execution, meaning that in order to view a different part of
a computation, the programmer must run more of the program. This makes it
impossible to look back at a previous program state or jump between two sec-
tions of interest. Debugging logs output by the program give a specific, passive
view of the execution, but an unstructured one: the logs cannot be navigated
or cross-referenced.

Additionally, the continuity between the language used to edit a program
and the one used by the prototype to display its behavior avoids the additional
cognitive load imposed by tools which use different interfaces for each task.

3.5 Questions

While this prototype delimited and communicated the subject of the thesis, it
also identified some questions for the remainder of the thesis investigation:

• How does this approach scale to larger programs?

• How does this functionality integrate into a complete user interface?

Chapter 4

Analysis

This chapter breaks down the challenges in understanding code and presents
some principles for overcoming them.

4.1 Frustrations with Current Tools

Current tools for understanding and debugging code offer many frustrations to
programmers. Most fall under the overall complaint, “I can’t keep it all in my
head.” Programmers need to remember previous states of time and connections
between different parts of the program.

Debugging using a traditional debugger can be very awkward and time con-
suming. The most important step is locating the bug. This usually requires
guessing many possible circumstances which could create it, stopping the de-
bugger at each one (which might mean repeatedly stepping through a piece of
code until the desired condition appears), examining the contents of many dif-
ferent variables (often in a difficult to read form), and slowly advancing through
the code to see if the bug appears. Click the wrong button and execution can
skip right past the area of interest, requiring a restart of the entire process.

Another problem is the number of distinct pieces of information that must
be integrated by the programmer. A debugger shows the values of variables in
one window, the program’s output in another, the current stack of function calls
in a third, program threads in a fourth, with only a small amount of room left
over for the source code itself, whose repair is the object of the whole process.
Recently, debuggers have begun integrating more information into the source
code window, by, for example, displaying the value of a variable when the mouse
cursor hovers over it. My research furthers this process, relieving programmers
of the cognitive burden of combining many small facets of the program’s state.

The following list of frustrations was gathered from extended interviews
with three professional programmers in their mid-twenties, with an average of
three years of post-college experience, along with casual conversations with other
programmers.

• I can’t tell what connects to what.

• I’m getting lost in the details.

• I can’t tell what’s happening.

19

David A. Mellis – Tangible Code – May 22, 2006 20

• I don’t know where in the code to look.

• I don’t know what will happen if I change this.

4.2 Breakdown of the Debugging Process

In order to better understand the process and requirements of debugging (one
of the major reasons for seeking to understand a program), I created this break-
down based on my own experience and interviews with two of the aforementioned
professional programmers.

Task 1. Determine relevant general section of code.

Technique a: guess source of problem, place breakpoints before and after.

• action: look through different source files

• action: place breakpoints

• action: start debugger

Technique b: logging (print statements)
Technique c: compare with a working version of the code

Task 2. Narrow in on specific, proximate cause (i.e. specific line of
code).

• action: step through code one line at a time

• action: monitor watch window (variables window) while stepping, check-
ing for incorrect values

• action: flag proximate cause

Task 3. Determine if proximate cause is root cause (i.e. is the line of
code correct?).

• action: reasoning

• action: reading documentation for objects/functions used in the line of
code: do they do what the author of the code thought they do?

• action: perform computations.

• action: fudge values

Task 4. If this is not the root cause, repeat tasks 2 and 3.

• action: step into function which returned incorrect value/performed in-
correct computation

• action: review previous changes to variable which has incorrect value

• action: examine external dependencies (e.g. values in database, behavior
of other programs, contents of a file, etc.)

David A. Mellis – Tangible Code – May 22, 2006 21

Task 5. Fix root cause (i.e. edit the code).

• action: text editing

• action: look up classes/functions in documentation

Task 6. Check that it corrected the incorrect behavior.

• action: replay input (GUI, files, network, DB, etc.)

Task 7. Make sure nothing else broke.

• action: run unit tests

• action: review unit test results for failures

Task 8: If something else broke, figure out why (tricky).

4.3 Other Motivations for Understanding Code

Debugging isn’t the only reason for seeking to understand a program. Here are
some of the others.

Need to understand a program/library generally

Reason 1: want to use the program/library
Reason 2: want to modify/improve program/library
Reason 3: want to learn from program/library

Need to understand dependencies

Need to monitor a long-running program (e.g. memory usage, per-
formance, errors, etc.)

4.4 Interface Metaphors

These three metaphors introduce some the primary differences between a tradi-
tional debugger and the Tangible Code interface described in the next chapter.
They were created to help explain the concepts of this thesis to a non-technical
audience.

Disjoint vs. Unified Time

Traditional debuggers freeze a program at a particular moment. To show the
state of a program at a later point in time, the debugger runs more of the
program. There is no way to look back at previous states of the program, so
the programmer must remember any relevant information and be careful not
to miss any important calculations by letting too much of the program run at
once. See Figure 4.1(a).

The Tangible Code environment, in contrast, presents the entire history of
the program in an unified interface (Figure 4.1(b)).

David A. Mellis – Tangible Code – May 22, 2006 22

(a) In a traditional debugger, look-
ing ahead in a program’s execu-
tion completely replaces the previ-
ous state.

(b) In the Tangible Code environ-
ment, multiple states of the pro-
gram can be seen at once.

Figure 4.1: Two approaches to handling time.

Abstract Instructions vs. Concrete Operation

Because they offer only frozen snapshots of a program’s execution, traditional
debuggers don’t show the code operating on data. Instead, specific values tend
to be separated from variables, leaving the code as an abstract set of instructions
about whose operation the programmer must reason instead of observe.

(a) Most debuggers present instruc-
tions separate from the data they
manipulate.

(b) Tangible Code attempts to in-
tegrate them.

Figure 4.2: Variables and their values.

Static vs. Dynamic Structure

As discussed in the background research chapter, current tools comprehend
something of the static structure of code. They do not, however, typically
analyze or display anything of the dynamic structure of the code. This puts
on the programmer the additional burden of infering and remembering this
structure. There’s a computer present, but the programmer has to mentally
run the program!

David A. Mellis – Tangible Code – May 22, 2006 23

(a) Current tools understand the
static structure of code.

(b) Tangible Code shows the dy-
namic structure as well.

Figure 4.3: Static and dynamic structure.

4.5 Debugging Scenario

This scenario illustrates the process of debugging and points out some of the
ways in which Tangible Code improves upon existing debuggers (Figure 4.4).

David A. Mellis – Tangible Code – May 22, 2006 24

(a) Adding 12 and 5 with the calculator (b) The program gives the wrong answer; it
must have a bug.

(c) A list of the files of source code used by
the program; something that most current
debuggers don’t show.

(d) The contents of output.c. The box
shows the value of the variable answer passed
into this function; it is wrong.

(e) The programmer enters the correct value
for this variable; a red flag appears to indi-
cate that there is currently an incorrect value
somewhere in the code.

(f) To help track down the root of the prob-
lem, the tool can jump to the source of the
value of this variable.

(g) Here’s the problem: someone neglected
to write the code to calculate the answer.

(h) The programmer types in the correct
code.

(i) And now the calculator gives the right an-
swer. Notice that the flag has turned green,
to indicate that the value of the answer vari-
able is correct.

Figure 4.4: Debugging scenario showing mindset and needs of programmer.

Chapter 5

Interface Design

Tangible Code presents a unified history of a program’s behavior. It is designed
for mainstream programming languages like C, C++, or Java, which share a
similar syntax. It differs from previous tools in its integration of variables and
values; its unified display of the progression of time; and its visualization of the
connection between different parts of the program. It makes tangible what were
previously abstractions, giving time, values, and connections a location in the
interface and makes them amenable to manipulation.

Figure 5.1: Overview of the Tangible Code software tool.

An implementation of Tangible Code would work by keeping track of every
operation performed by the software when it runs, including input and output.

25

David A. Mellis – Tangible Code – May 22, 2006 26

Then, after the execution is complete, Tangible Code analyzes this trace and
presents it to the programmer. This interface puts programmers in control
by allowing them to move through time as they choose, instead of necessarily
following the order of the program itself.

5.1 Function Log and Timeline

Sequences of time are ordered and grouped in a few different ways. The most
important method of organizing programs is that of splitting the code into
functions: named, relatively self-contained pieces that take inputs, perform a
particular task, modify the program’s state and return outputs. The record of
which functions were called, in what order, with what inputs, and by which other
functions forms the function log, the core of the program history displayed by
Tangible Code. It is a hierarchical timeline of structural units. As each function
may call many other functions, this record forms a hierarchical tree (Figure 5.2).

(a) (b)

Figure 5.2: Log composed of the hierarchical sequence of function calls performed by
the program. The function call named in a line occurred later in time than the line pre-
ceeding it. Each function, however, may contain calls to other functions. The number
on the right indicates the number of function calls nested beneath the corresponding
line. The vertical white bar on the far right shows “wall-clock time”; the blue line
corresponds to the selected function in the log.

David A. Mellis – Tangible Code – May 22, 2006 27

The interface also handles wall-clock time: the actual seconds, minutes, and
hours as measured by a clock independent of the program under study. A
particular piece of code might take more or less wall-clock time to execute
(depending, say, on the speed of the computer or the other programs running at
the same time) despite carrying out the exact same computations. The vertical
timeline at the right of the interface display the relative times of various events
in the program.

A typical file of source code provides little indication of the relative impor-
tance of its lines. One file may contain dozens of function calls, most of which
perform an unimportant task and a few of which contain most of the work of
the entire program. Tangible Code attempts to show this relative importance
of various function calls by displaying next to each line in the function call
record the number of function calls nested beneath that line. This allows the
programmer to delve directly into the meat of the program without needing to
scan through each part.

The function log and timeline turn time into a tangible object. Each funda-
mental event (a function call) receives a location on the screen, from which it
can be visually compared to others and manipulated.

5.2 Live Function

Figure 5.3: The source code of a function: abstract instructions that can be applied
to many different inputs.

Figure 5.4: Variable values integrated into the code. Here, we see the numbers 1, 2,
3, and 4 that were passed into the sum function, and the number 10 which is returned
as its result.

A function may be called many times in the course of a program – each time
the same source code operates on (possibly) different inputs and may behave
in different ways. (For example, in Figure 5.2(b), Graphics.draw() was called
repeatedly.) To view a particular call to a function, the programmer selects the
corresponding line from the function log. Because this line refers to a precise
moment in time, the data being operated on can be shown. I refer to this
function call and associated data as the live function.

David A. Mellis – Tangible Code – May 22, 2006 28

Within the live function, Tangible Code displays a variable’s value alongside
it, using GUI widgets to embed these values into textual source code (Figure
5.4). This integration allows the programmer to see the different values a vari-
able takes on at different points in the code. The display of the values (which
would benefit from further graphical refinement) attempts to be legible but
visually separate, so that the programmer can read just the code if desired.

The live function makes the program’s operation tangible, allowing program-
mers to follow the sequence of computations by simply reading the code. To see
the past, they need only look back to preceeding lines.

Within the live function, execution typically proceeds down through the
code, one line at a time. Conditionals (like if-statements), however, cause cer-
tain lines of code to be executed only under given conditions. In Tangible Code,
unexecuted lines are grayed out. Removing them completely would disorient
programmers familiar with the code and expecting to see those lines.

Figure 5.5: An if-statement. The condition x < 100 is true, so the first block is
executed and the second skipped.

Loops can cause some lines of code to be repeated multiple times, each
time with potentially different values and behaviors. Tangible Code provides an
interface component for cycling through each iteration of a loop (Figure 5.6).

Figure 5.6: A loop whose body runs 10 times, each time giving i a new value. Editing
the text box or clicking the arrows changes the iteration shown.

The live function occurs somewhere within a chain of function – those that
called it and those which it calls. Tangible Code makes it easy to navigate
between functions. Because the live function refers to a particular moment, so
too does each call within it to another function. Clicking one of these jumps
to that function’s code, and makes it the live function. That is, the function
call itself becomes a tangible connection – there is no need for the programmer
to manipulate auxilary controls or to find a corresponding line in another list,
lessening cogntive burden and allowing the programmer to concentrate on their
task, not the navigation.

Clicking the arrow at the upper left of the live function returns to the func-
tion that called it (i.e. its parent). After jumping to the parent function’s code,
an outline zooms out from the statement that calls the child function. This
guides the programmer’s eye from the previous live function out to the current
one, showing where the environment jumped from (Figure 5.7).

David A. Mellis – Tangible Code – May 22, 2006 29

Figure 5.7: An animated outline guides the programmer’s eye out from the previous
live function – the call to output – to the new one, calculate. This is an overlay
of multiple positions in the outline’s movement – onscreen, the outline would move
continuously between them.

5.3 Flagging

Figure 5.8: A solid red diamond indicates a flagged value inside the corresponding
function; a hollow diamond means that there is a flagged value in a function nested
beneath the corresponding function.

As in the debugging scenario above, a programmer may sometimes know
that the value of a variable at a particular point in the program’s execution
is not what it should be. The ability to flag this location establishes it as a
reference – both for precisely communicating a problem with others and for

David A. Mellis – Tangible Code – May 22, 2006 30

checking whether changes to the code fix the problem.
In Tangible Code, the value itself becomes a control for performing actions

on it, including flagging. Clicking it drops down a menu – the flagging command
turns the value red. If, as in the scenario, the programmer knows the correct
value of the variable, that can be entered next to the current, incorrect value.
Once the code has been fixed and the flagged value is correct, it turns green. It
can then be kept as a check during subsequenct code changes, or unflagged.

(a) Clicking a variable value drops down a menu.

(b) Flagged values are shown with a red background.

(c) If known, the correct value can be entered.

(d) When the flagged value is correct, the background turns green.

Figure 5.9: Flagging a variable.

All flagged variables are also shown in the function log and the timeline. This
enables the programmer to see the locations and amount of incorrect values, and
to tell when they have been corrected.

5.4 Search and Traces

Tangible Code provides a simple search feature with a wide range of uses. Pos-
sible searches include files, classes, functions, and variables. Search results are
shown in the function log and timeline (Figure 5.10). Their quantity and distri-
bution provides the programmer an indication of the way in which that item is

David A. Mellis – Tangible Code – May 22, 2006 31

used in the program: initialization functions will occur only near the beginning,
whereas a low-level class might be almost uniformly distributed across the entire
timeline. Additionally, by entering expression (e.g. x < 0 or person.firstname
== "David" && person.age == 26), the programmer can narrow in on partic-
ular areas that may contain problems or potential problems. Giving the search
field the same syntax as the programming language allows programmers to use
their knowledge of it to construct complex search queries.

Figure 5.10: Search results shown in yellow. Solid circles represent a result in the
corresponding function itself, hollow ones a result nested within the corresponding
function.

Also, the function log can show the changes to a variable over the course of
the program (Figure 5.11). This enables a programmer to see the precise lifetime
of a variable and to locate the beginning or end of a particular problematic value
(e.g. null). It also enables comparison between multiple variables. Here, the
history of the values of a variable become a tangible, on-screen entity.

5.5 File Listing and Dependencies

Another aspect of a program that’s not apparent from the code is the way in
which the various pieces depend on each other. A programmer hoping to reuse
a particular component in another program, for example, would benefit from
an easy way of determining which other components also needed to be brought

David A. Mellis – Tangible Code – May 22, 2006 32

Figure 5.11: A variable trace. The vertical lines indicate the variable’s value remained
constant. Blank space means the variable didn’t exist at that point.

David A. Mellis – Tangible Code – May 22, 2006 33

over. Or a programmer about to change a piece of code might want to review
all the places where that code is used. Tangible Code provides an easy way to
see the dependencies between files and functions in a program. In the list of all
the files in the project, the one which is currently open is highlighted. Arrows
point to the files it uses, and from files that use it. If one of the functions in
the file is currently live, the file is highlighted in blue, and the files used by that
particular function are pointed to with blue arrows. (Figure 5.12.)

(a) Dependencies between files in a
project.

(b) Here, files used by the current
live function are shown in blue.

Figure 5.12: Showing dependencies between parts of a program.

Chapter 6

Feasibility

The Omniscient Debugger mentioned in the background research provides evi-
dence of the feasibility of collecting a comprehensive record of a program’s exe-
cution and displaying it to the programmer. Though currently only a research
prototype, it could be extended to handle larger and more complex programs.
In particular, in order to reduce the amount of storage needed, portions of the
execution history could be dynamically regenerated when viewed by the pro-
grammer. Or the programmer could select only certain portions of the program
to be logged.

The interface presented in the preceding chapter could be implemented with
the same information collected by the Omniscient Debugger. More analysis
would be required – in order to show, for example, the dependencies between the
different files of a project. Some parts of the interface require custom interface
components.

None of these tasks seem substantially harder than those involved in the de-
velopment of the other parts of a programming environment such as Microsoft’s
Visual Studio or the open-source Eclipse.

Tangible Code makes economic sense as well. Programmers time is expensive
and not easily substituted. As Brooks famously wrote in The Mythical Man-
Month, adding more programmers to a project tends to make it later. It only
makes sense to improves the productivity of programmers through better tools.

34

Chapter 7

Evaluation

The design of Tangible Code underwent a continual process of evaluation and
refinement, from initial sketches (on paper and screen), wireframes, detailed
mockups, and animations. This ensured that the process was cumulative and
that little work was wasted.

Feedback on an earlier version of the wireframes was received from seven
programmers (mid-20’s to mid-30’s, with at least a few years of professional
programming experience). They expressed approval of the general direction and
made specific suggestions and feature requests. Some have been incorporated
into the above interface design.

Figure 7.1: An HTML prototype of Tangible Code operating on the buggy quicksort
example from the Omniscient Debugger.

An HTML prototype (Figure 7.1) elicited more specific responses in ex-
tended interviews with two of these programmers. The prototype provided the
core functionality of the Tangible Code interface, allowing the respondents to

35

David A. Mellis – Tangible Code – May 22, 2006 36

simulate the experience of using it to debug a particular program. The proto-
type’s approximation of the desired appearance and behavior, however, led to
some confusion about the meaning of some parts of the interface. The function
log, for example, was not immediately perceived as a record of an already com-
pleted program execution. This difference from the presentation in traditional
debuggers of an individual snapshots of time represents a fundamental shift and
requires an adjustment in the perspective of the programmer. From this prelim-
inary user feedback, however, it seems that once the shift is made it is a natural
and readily accepted approach.

Many possibilities exist for expansion of the Tangible Code interface. The
timeline, for instance, could be extended – one per thread – to display time-
slicing and locking. Integration with the GUI of the program being inspected
would allow a programmer to see the code triggered by a particular action in
the interface. Storing various traces with the corresponding revisions of code –
and displaying differences between them – would allow programmers to easily
understand the effect of code changes on the behavior of the program.

Through the principles expressed in the metaphors in the analysis chapter,
however, Tangible Code helps to relieve the cognitive burden on programmers
as they debug or otherwise read code. The use of tangible time, tangible values,
and tangible connections give form to what were previously abstractions in the
mind. Code and its behavior become manipulable entities – you can practically
touch them.

Chapter 8

Conclusion

This thesis has required repeated explanation to a non-technical audience. The
visual metaphors and scenario above are just two examples of the methods
used. This constant effort had great benefit – it forced me to breakdown the
principles, pieces, and accomplishments of my work in order to explain them.
It also helped me maintain my focus, for despite many requests to create a tool
for non-programmers (and frequent misconceptions that such was actually my
goal) – this specialized effort seems to have yielded some general insights about
the ways in which abstract concepts can be translated into tangible components
of an interface.

37

Bibliography

[1] Abelson, Harold, and Gerald Jay Sussman, with Julie Sussman. Structure
and Interpretation of Computer Programs, MIT Press: Cambridge, MA,
1984.

[2] Atkins, David L., ‘Version Sensitive Editing: Change History as a Pro-
gramming Tool’. ECOOP 98, SCM-8, LNCS 1439. Springer-Verlag: Berlin.
1998. 146–157.

[3] Baecker, Ron, Chris DiGiano, and Aaron Marcus, ‘Software Visualization
for Debugging’. Communications of the ACM Vol. 40, No. 4, Apr. 1997.
44–54.

[4] Chitil, Olaf, Colin Runciman, and Malcolm Wallace, ‘Freja, Hat and Hood:
A Comparative Evaluation of Three Systems for Tracing and Debugging
Lazy Functional Programs’. IFL 2000, LNCS 2011. Eds. M. Mohnen and
P. Koopman, 2001. Springer-Verlag: Berlin. 176193.

[5] Edwards, Jonathan, ‘Example Centric Programming’. OOPSLA04, 24-28
Oct. 2004.

[6] ——, The Future of Programming. 6 Dec. 2004. Alarming Development.
http://alarmingdevelopment.org/index.php?p=6

[7] ——, ‘Subtext: Uncovering the Simplicity of Programming’. OOPSLA05,
16-20 Oct. 2005

[8] Goldsmith, Simon, Robert O’Callahan, and Alex Aiken. ‘Relational Queries
Over Program Traces’. OOPSLA05, 16–20 Oct. 2005.

[9] Jones, James A., Mary Jean Harrold, John Stasko, ‘Visualization of Test
Information to Assist Fault Localization’. Proceedings of the International
Conference on Software Engineering, May 2002.

[10] Paul, Christiane, curator. CODeDOC. Whitney Artport. Sept. 2002.
http://artport.whitney.org/commissions/codedoc/

[11] Petzold, Charles. Does Visual Studio Rot the Mind?. 20 Oct. 2005.
http://charlespetzold.com/etc/DoesVisualStudioRotTheMind.html

[12] Saff, David, and Michael D. Ernst. ‘Reducing Wasted Development Time
via Continuous Testing’. Fourteenth International Symposium on Software
Reliability Engineering, 17-20 Nov. 2003. 281–292.

38

David A. Mellis – Tangible Code – May 22, 2006 39

[13] Schiffman, Jared. Aesthetics of Computation – Unveiling the Visual Ma-
chine, Thesis: Master of Science in Media Arts and Sciences, MIT, 2001.

[14] Spencer, Rick. Typical Usability Problems with Debug-
ging in C#. 20 Mar. 2004. ricksp’s weblog. 10 Apr. 2006.
http://blogs.msdn.com/ricksp/archive/2004/03/30/104168.aspx

[15] ——. What Is Typical C# Debugger Usage?.
29 Mar. 2004. ricksp’s weblog. 10 Apr. 2006.
http://blogs.msdn.com/ricksp/archive/2004/03/29/101410.aspx

[16] Toomim, Michael, Andrew Begel and Susan L. Graham. ‘Managing Dupli-
cated Code with Linked Editing’. IEEE Symposium on Visual Languages
and Human-Centric Computing, Sept. 2004.

[17] Tung, Sho-Huan Simon, ‘Visualizing Evaluation in Scheme’. LISP and Sym-
bolic Computation, No. 5. 1997. 1–23.

